作者君在作品相关中其实已经解释过这个问题。
不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”
那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。
以下是文章内容:
longterionsandstabilityofaryorbitsoursorsyste
abstract
weresenttheresultsofverylongterbstegrationsofaryorbitalotionsover109yrtisanscdgallneicksectionofournubsdatashowsthatthearystoursibsodel,seestobeitestableevenoverthisverylongtisancloserlookatthelowestfreencyosciltionslowassfiltershowstheotentiallydiffivecharacterofterrestrialaryotion,eseciallythatofrcurythebehaviouroftheeentricityofrcuryourtegrationsisalitativelysirtotheresultsfror'ssecurerturbationtheory(egeax?035over?±gyr)however,therearenoaarentsecurcreasesofeentricityorclationanyorbitalelentsofthes,whichayberevealedbystilllongerterbstegrationswehavealsoerforduleoftrialtegrationscdgotionsoftheouterfiveoverthedurationof1010yrtheresultdicatesthatthethreebstheune–tosystehavebeenataedoverthe1011yrtisan
troduction
11defitionoftheroble
theestionofthestabilityofoursorsystehasbeendebatedoverseveralhundredyears,scetheeraofnewtontheroblehasattractedanyfasovertheyearsandhasyedcentralrolethedevelontofnonleardynabsandchaostheoryhowever,wedonotyethavedefiteanswertotheestionofwhetheroursorsysteisstableornotthisisartlyresultofthefactthatthedefitionoftheter‘stabilityisvaguewhenitisedretiontotheroblearyotionthesorsysteactuallyitisnoteasytogiveclear,rigoroandhysicallyangfuldefitionofthestabilityofoursorsyste
aonganydefitionsofstability,hereweadotthehilldefition(gdan1993):actuallythisisnotdefitionofstability,butofstabilitywedefesystegunstablewhencloseenunterourssowherethesyste,startgfrocertaitialnfiguration(chabers,wetherillboss1996itotanikawa1999)systeisdefedasexeriencgcloseenunterwhenbodiesaroachoneanotherwithanareaofthergerhillradiotherwisethesysteisdefedasbegstablehenceforwardwestatethatourarysysteisdynaicallystableifnocloseenunterhaensdurgtheageofoursorsyste,about±5gyrcidentally,thisdefitioncedbyonewhichanourrenceofanyorbitalcrossgbeeeneitherofairoftakescethisisbecaeweknowfrobsthatanorbitalcrossgisverylikelytoleadtocloseenunteraryandroarysystes(yoshaga,kokuboako1999)ofursethisstateotbesilyaliedtosysteswithstableorbitalresonancessuchastheune–tosyste
12reviostudiesandaisofthisresearch
additiontothevaguenessofthencetofstability,theoursorsysteshowcharactertyicalofdynabschaos(ssanwisdo1988,1992)thecaeofthischaoticbehaviourisnowartlyunderstoodasbegresultofresonanceoverg(n1999lecar,franklholan2001)however,itwouldreiretegratgoveranensearysystescdgallneforeriodvergseveral10gyrtothoroughlyunderstandthelongterevotionofaryorbits,scechaoticdynabssystesarecharacterizedbytheirstrongdeendenceonitialnditions
frothatotofview,anyofthereviolongterbstegrationscdedonlytheouterfive(ssanwisdo1988koshitanakai1996)thisisbecaetheorbitaleriodsoftheouteraresobslongerthanthoseofthenerfourthatitisbseasiertofollowthesysteforgiventegrationeriodatresent,thelongestnuionsublishedjournalsarethoseofduncanlissauer(1998)althoughtheirtargetwastheeffectofostrasslossonthestabilityofaryorbits,theyerforionsvergto?1011yroftheorbitalotionsofthefourjoviantheitialorbitalelentsandarethesaasthoseofoursorsystebslissauer'saer,buttheydecreasetheassofthesungraduallytheirnubsexerintsthisisbecaetheynsidertheeffectofostrasslosstheaernseently,theyfoundthatthecrossgtiscaleofaryorbits,whichcanbetyicaldicatorofthestabilitytiscale,isitesensitivetotherateofassdecreaseofthesunwhentheassofthesunisclosetoitsresentvae,thejovianreastableover1010yr,orerhaslongerduncanlissaueralsoerfordfoursirexerintsontheorbitalotionofseven(ventoune),whichversanof?109yrtheirexerintsonthesevenarenotyetrehensive,butitseesthattheterrestrialalsoreastabledurgthetegrationeriod,atagalrosciltions
ontheotherhand,hisauratesebssecurerturbationtheory(skar1988),skarfdsthatrgeandirregurvariationscanaeartheeentricitiesandclationsoftheterrestrials,eseciallyofrcuryandarsontiscaleofseveral109yr(skar1996)theresultsofskar'ssecurerturbationtheoryshouldbenfirigatedbyfullynuions
thisaerweresentreliaryresultsofsixlongterbstegrationsonallnearyorbits,vergsanofseveral109yr,andofothertegrationsvergsanof1010yrthetotalesedtiforalltegrationsisorethanyr,severaldedicatedcsandworkstationsoneofthefundasionsofourlongterionsisthatsorsystearyotionseestobestabletersofthehillstabilityntionedabove,atleastovertisanofgyractually,ournuionsthesystewasfarorestablethanwhatisdefedbythehillstabilitycriterion:notonlydidnocloseenunterhaendurgthetegrationeriod,butalsoallthearyorbitalelentshavebeennfednarrowregionbothtiandfreencydoa,thougharyotionsarestochasticscetheuroseofthisaeristoexhibitandoverviewtheresultsofourlongterbstegrations,weshowtyicalexalefiguresasevidenceoftheverylongterstabilityofsorsystearyotionforreaderswhohavebsanddeeerterestsournubsresults,wehaverearedwebage(aess),whereweshowraworbitalelents,theirlowassfilteredresults,variationofdeunayelentsandangurontudeficit,andresultsofoursiletibsanalysisonallofourtegrations
sectionwe
ieflyexourdynabsbsthodanditialnditionsedourtegrationssectionisdevotedtodescritionoftheickresultsofthenuionsverylongterstabilityofsorsystearyotionisaarentbotharyositionsandorbitalelentsroughestiationofnubserrorsisalsogivensectiongoesontodiscsionofthelongesttervariationofaryorbitslowassfilterandcdesdiscsionofangurontudeficitsection5,weresentsetofnuionsfortheouterfivethatsans1010yrsectionwealsodiscsthelongterstabilityofthearyotionanditsossiblecae
descritionofthenuions
(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)
23nubsthod
weutilizesendorderwisdoasourionthod(wisdon1991koshita,yoshidanakai1991)withsecialstarturoceduretoreducethetruncationerrorofanglevariables,‘warstart(sahatreae1992,1994)
thestesizeforthenuionsisthroughoutalltegrationsofthene(n±1,2,3),whichisabout111oftheorbitaleriodofthener(rcury)asforthedeterationofstesize,weartlyfollowtherevionuionofallnessanwisdo(1988,72d)andsahatreae(1994,22532d)weroundedthedecialartofthetheirstesizestotoakethestesizeultileofordertoreducetheautionofroundofferrortheutationrocessesretiontothis,wisdon(1991)erforbstegrationsoftheouterfivearyorbitsthesybsawithstesizeof400d,11083oftheorbitaleriodofjuitertheirresultseestobeaurateenough,whichartlyjtifiesourthodofdetergthestesizehowever,scetheeentricityofjuiter(?005)isbssallerthanthatofrcury(?02),weneedsocarewhenwearethesetegrationssilytersofstesizes
thetegrationoftheouterfive(f±),wefixedthestesizeat400d
weadotgas'andfunctionsthesybsatogetherwiththethirdorderhalleythod(danby1992)assolverforkelereationsthenuberofaxiuiterationswesethalley'sthodis15,buttheyneverreachedtheaxiuanyofourtegrations
thetervalofthedataoututis200000(?547yr)forthecalcutionsofallne(n±1,2,3),andabout8000000(?21903yr)forthetegrationoftheouterfive(f±)
althoughnooututfiltergwasdonewhenthenuionswererocess,wealiedlowassfiltertotheraworbitaldataafterwehadletedallthecalcutionsseesection41fororedetail
24errorestiation
241retiveerrorstotalenergyandangurontu
aordgtooneofthebasicroertiesofsyors,whichnservethehysicallynservativeantitieswell(totalorbitalenergyandangurontu),ourlongterbstegrationsseetohavebeenerfordwithverysallerrorstheaveragedretiveerrorsoftotalenergy(?10?9)andoftotalangurontu(?10?11)havereaednearlynstantthroughoutthetegrationeriod(fig1)thesecialstarturocedure,warstart,wouldhavereducedtheaveragedretiveerrortotalenergybyaboutoneorderofagnitudeorore
retivenubserrorofthetotalangurontuδaa0andthetotalenergyδee0ournuionsn±1,2,3,whereδeandδaaretheabsotechangeofthetotalenergyandtotalangurontu,resectively,ande0anda0aretheiritialvaesthehorizontalunitisgyr
notethatdifferentoeratgsystes,differentries,anddifferenthardwarearchitecturesresultdifferentnubserrors,throughthevariationsroundofferrorhandlgandnubsalgorithstheueraneloffig1,wecanregnizethissituationthesecurnubserrorthetotalangurbsshouldberigorolyreservedtoeerecision
242errorarylongitudes
scethesybsasreservetotalenergyandtotalangurontuofnbodydynabssystelywell,thedegreeoftheirreservationaynotbegoodasureoftheauracyofnuions,eseciallyasasureoftheositionalerrorofs,ietheerrorarylongitudestoestiatethenubserrorthearylongitudes,weerfordthefollogrocedureswearedtheresultofourlongterionswithsoions,whichsanbsshortereriodsbutwithbshigherauracythantheionsforthisurose,weerforbsuratetegrationwithstesizeof0125(164oftheions)sanng105yr,startgwiththesaditionsasthen?1tegrationwensiderthatthistesttegrationrovideswith‘seudotruesotionofaryorbitalevotionnext,wearethetesttegrationwiththeion,n?1fortheeriodof105yr,weseedifferenceananoaliesoftheearthbeeenthetegrationsof?052°(thecaseofthen?1tegration)thisdifferencecanbeextraotedtothevae?8700°,about25rotationsofearthaftergyr,scetheerroroflongitudescreaseslearlywithtithesybsrly,thelongitudeerroroftocanbeestiatedas?12°thisvaefortoisbsbetterthantheresultkoshitanakai(1996)wherethedifferenceisestiatedas?60°
nubsresultsgnceattherawdata
thissectionwe
ieflyreviewthelongterstabilityofaryorbitalotionthroughsosnashotsofrawnubsdatatheorbitaldicateslongterstabilityallofournuions:noorbitalcrossgsnorcloseenuntersbeeenanyairoftookce
31generaldescritionofthestabilityofaryorbits
first,we
ieflylookatthegeneralcharacterofthelongterstabilityofaryorbitsourterestherefocesarticurlyonthenerfourterrestrialforwhichtheorbitaltiscalesarebsshorterthanthoseoftheouterfiveaswecanseeclearlyfrororbitalnfigurationsshownfigsand3,orbitalositionsoftheterrestrialdifferlittlebeeentheitialandfalartofeachnuion,whichsansseveralgyrthesolidlesdenotgtheresentorbitsoftheliealostwiththeswarofdotseventhefalartoftegrations(b)and(d)thisdicatesthatthroughouttheentiretegrationeriodthealrvariationsofaryorbitalotionreanearlythesaastheyareatresent
verticalviewofthefourneraryorbits(frotheaxisdirection)attheitialandfalartsofthetegrationsn±1theaxesunitsareauthexyneissettothevariantneofsorsystetotalangurontu(a)theitialartofn+10to0054710yr)(b)thefalartofn+14933910to4988610yr)(c)theitialartofn?1(t=to?00547109yr)(d)thefalartofn?1=?3918010to?3972710yr)eachanel,totalof23684otsarelottedwithantervalofabout2190yrover547107yrsolidleseachaneldenotetheresentorbitsofthefourterrestrial(takenfrode245)
thevariationofeentricitiesandorbitalclationsforthenerfourtheitialandfalartofthetegrationn+1isshownfigasexected,thecharacterofthevariationofaryorbitalelentsdoesnotdiffersignificantlybeeentheitialandfalartofeachtegration,atleastforven,earthandarsthe
对火星轨道变化问题的最后解释[1/2页]